





# ELECTRONICS AT THE CORE OF THE AUTONOMOUS, CONNECTED AND ELECTRIFIED VEHICLES REVOLUTION

https://www.youtube.com/watch?v=Bg8zw1SWiJA&feature=youtu.be

https://www.youtube.com/watch?v=2Y7uLbpehcQ&list=PL13CyHsHfOt1GC19RsPv-FvITnbbnd2e0&index=7

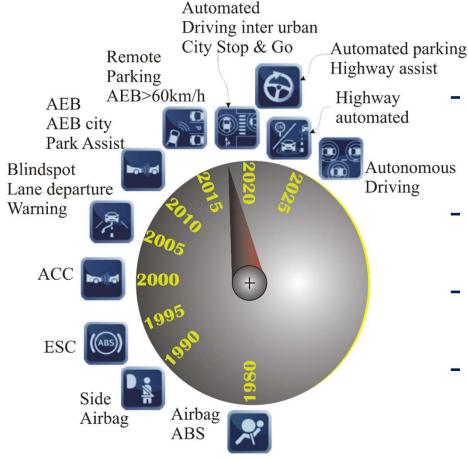


Prof. Ing. Sergio Saponara +39 3468790937



sergio.saponara@unipi.it

https://www.linkedin.com/in/sergio-saponara-3031431/




SIE 2021, Trieste, 8 July 2021

# Outline

- Trends in smart vehicles & intelligent transport systems (ITS) and impact for society/economy
- University pillars: opportunities for continuous education, R&D, and technology transfer in Electronics
- Example R&D case studies:
  - Integrated Power Converters for 48 V micro/mild-hybrid vehicles
  - ITS surveillance X-band Radar
  - Cybersecurity acceleration

# **Trends in smart vehicles and ITS**



\*\*https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

\*https://www.reuters.com/article/us-volkswagen-results-diesel-idUSKBN2141JB

#https://www.statista.com/statistics/200002/international-car-sales-since-1990/

### A research theme of high economical and social impacts

- Improvingsafety(1.3Mkilledpeople/yearworldwide\*\*,3.2k/yearkilled & 242k/year injuried in Italy\*\*\*)
- Reducing CO2 (diesel-gate cost 31.3 Billions for carmakers\*)
- Improving life conditions with less pollution/traffic-jam
- Improving user experience (comfort, digital lifestyle, status symbol, inclusive mobility for all, HMI, infotainment)
- High economic value (70M of new vehicles/year<sup>#</sup>, 40M of e-bikes/year sold worldwide<sup>##</sup>)

<sup>\*\*\*</sup>https://www.istat.it/it/files//2020/07/Road-accidents\_2019\_EN.pdf

<sup>##</sup>https://www.bike-eu.com/market/nieuws/2020/01/deloitte-study-e-bike-sales-in-2023-at-40-millionunits-generating-19-billion-euro-10137172

### **Trends in smart vehicles and ITS**

ACE: vehicles are becoming Autonomous, Connected, Electrified

Spin-off of the research results towards Robotics, Industry4.0, Logistics, Avionics, Energy Management...

Huge investments from Semiconductor and ICT companies and joint alliances with Tier-1&OEM car companies (e.g. INTEL-BMW, FCA-Google, NVIDIA-Bosch-VW-Continental)

INTEL (\$15.3 billion Mobileye acquisition) estimates the vehicle systems, data and services market per year to be up to \$70 billion by 2030\*

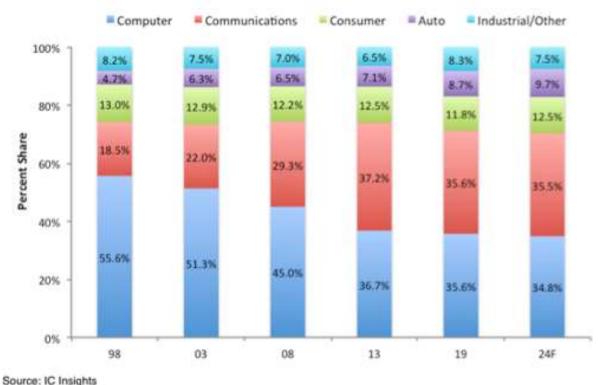
# VW group committed to \$86\*\* billion investments in 5 years in electrified and digital vehicles

\*\*https://www.reuters.com/article/volkswagen-strategy-idUSKBN27T24O

\*https://newsroom.intel.com/news-releases/intel-mobileye-acquisition/#gs.56yyye

# **ICT-Automotive industry alliances**




#### New CE0 of Ferrari (iconic car brand) from an Electronics company (B. Vigna from STMicroelectronics)

https://www.ferrari.com/en-EN/articles/ferrari-appoints-benedetto-vigna-as-chief-executive-officer

# **ICT-Automotive industry alliances**



# **Automotive ICs market trends**



#### IC Marketshare By System Type (\$)

### The big dilemma: Assisted driving or fully autonomous driving?

#### 100% safety not possible

What is possible? a statistics of incidents, injured/died people in favour of ADAS

Beware of legal issue!!!!!

Beware of psychological issues!!!!!

# Outline

- Trends in smart vehicles & intelligent transport systems (ITS) and impact for society/economy
- University pillars: opportunities for continuous education, R&D, and technology transfer in Electronics
- Example R&D case studies:
  - Integrated Power Converters for 48 V micro/mild-hybrid vehicles
  - ITS surveillance X-band Radar
  - Cybersecurity acceleration

### Vehicle as a platform for pervasive R&D in Electronics

#### **RF & mmWaves**

(mmW Radar, 802.11p/bd V2X, 5G C-V2X, GNSS)

#### **Power Electronics**

(SiC&GaN devices, DC/DC converters, inverters, on-board chargers,  $12V \rightarrow 48V \rightarrow 400V \rightarrow 800V$ , energy storage&BMS)

#### Sensors AFE & signal processing

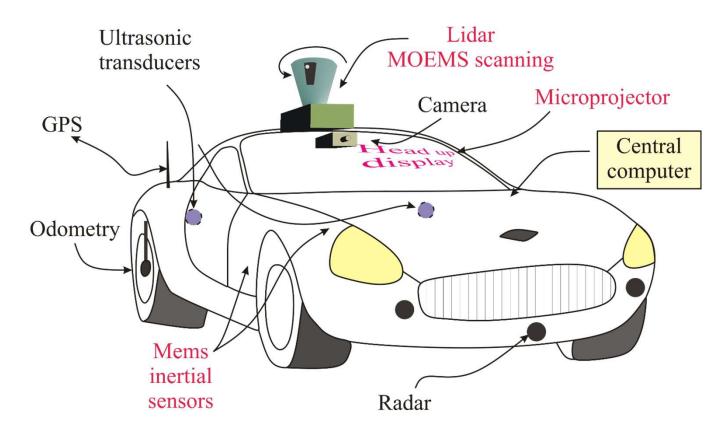
(Image, Radar, Lidar, Ultrasonics, IMU,..& fusion in real-time)

digital twin, RT robust & embedded control

#### **Opto-electronics**

(Low-cost Lidar, high-speed networking, FBG sensors, lights/display, SiPh)

# Sensors device & technologies (MEMS/MOEMS)


#### **Predictive-diagnostic**

AR 106ST

(thermal, EMI/EMC, electrical, ageing, vibrations,..) for functional safety

eHPC & memories (multi-core, AI & security accelerators, high SIL in harsh environments)

### **Example: Sensing & Measurement Perspective**



#### What?

obstacle detection

### Where?

position and direction of cars and obstacles

### When?

car to obstacle relative speed

### **Measurement Performance**

range, resolution and accuracy of distance, angles & speed? reliable (uncertainty, repeatability) measures in harsh environment ? secure (trusted, identified, private) measures? sustainable (low-power, low-cost, life-cycle)

# Scientific R&D funding

**FP7 ATHENIS-3D (2013-2017)** Automotive tested high-voltage and embedded non-volatile integrated SoC platform with 3D technology, EU ATHENIS 3D project funds 6 M€, UNIPI funds 0.3 M€, UNIPI leadership WP5 Test chip development

**H2020** Hiefficient (2021-2024) Highly EFFICIENT and reliable electric drivetrains based on modular, intelligent and highly integrated WBG power electronics modules, project budget 42 M€, UNIPI budget 0.45 M€, UNIPI leadership T3.3 Digital twin WBG-based power converters

H2020 EPI (2018-2021) European Processor Initiative, EU project funds 80 *M*€, UNIPI funds 1.55 *M*€, UNIPI leadership **WP9 Cybersecurity** 

H2020 TEXTAR0SSA (Apr 2021-2024): Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw Supercomputing Applications for exascale, lead of CINI (budget 1.2 M€, UNIPI linked part), project budget 6M€, UNIPI leadership WP2 IP accelerators (AI, mixedprecision&posits, cybersecurity)

H2020 The European Pilot (1 Oct 2021-2024): Pilot using Independent Local & Open Technologies, lead of CINI (budget 1 M€, UNIPI linked part), project budget 30M €









# **Continuous Education**

Electrification and digitization of vehicles and ITS  $\rightarrow$  needs of

<u>New (young, 25-30 yrs) engineers expert in vehicular electronics</u> (device, circuit, system levels; analog, digital; ele & opto) not only in semi conductor industry but mainly in mechanic/mechatronic companies

- new L8/LM29 (or simply, new curricula in current Electronics Eng.), degrees (e.g. Embedded Mechatronics)
- → more electronics courses in industrial engineering degrees (HW & embedded security LM Cybersecurity, Vehicular Electronics in LM Vehicle Eng., Electronic System for Robotics in LM Robotics and Control Engineering)

Re(Up)skilling of employees (35-55 yrs) with industrial eng. background Specific short courses (50-100 h/class)

(co-funds available from EU & local institutions; consolidating job positions)

New opportunities available from the PNRR (Missione 3: infrastrutture per mobilità sostenibile; Missione 2: rivoluzione verde e transizione ecologica)

# **Continuous Education**

https://www.continental.com/en/press/press-releases/2021-01-22-qualification-campaign-246248

#### **Automotive Electronics & Powertrain Electrification**

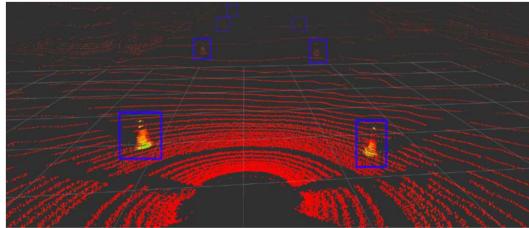
12 CFU Corso Perfezionamento, S. Saponara director, re-skill course for 100 Engineers of Vitesco (Continental), 4 classes, 645 h/14 teachers, 200k€ funding, Confindustria/Reg. Toscana support

**2 international summer schools** about 5G (1 edition) and IoT (7 editions, 2 times co-funded by IEEE CAS seasonal school scheme) including circuits&systems vehicular connectivity lectures



New proposal "e-Mobility: Digital & Electrified Products & Systems", 150k€, Pierburg, Magna, Azimuth Benetti, Wass (Leonardo), CNA/Comune Livorno/Regione Toscana support

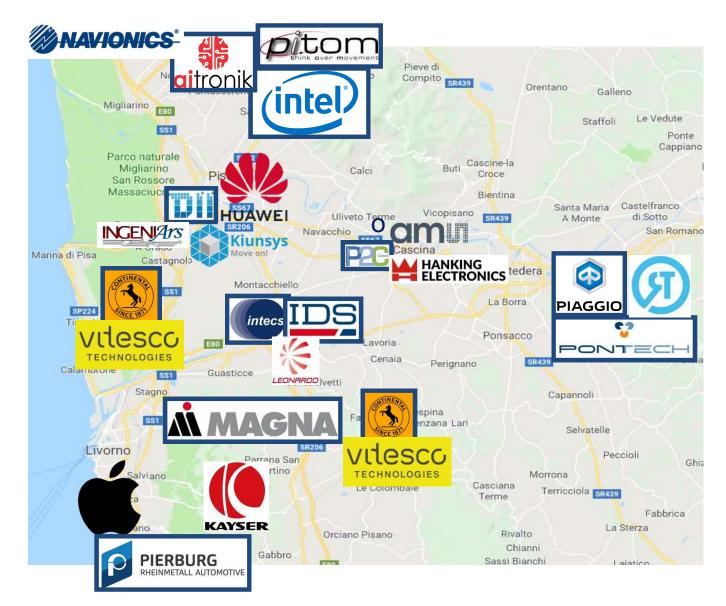
### Initiatives for students on vehicles at UNIPISA




Association of Universities + Institutions + 15 Industries operating in Tuscany



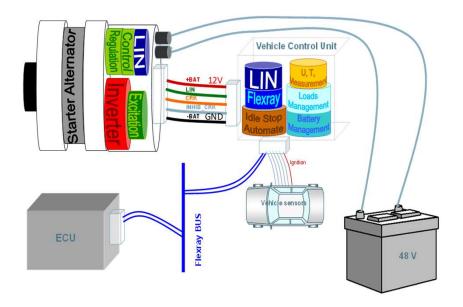



Formula SAE (Kerub car)

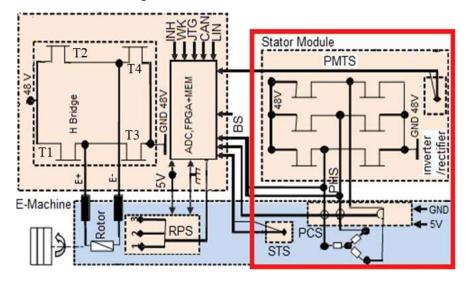


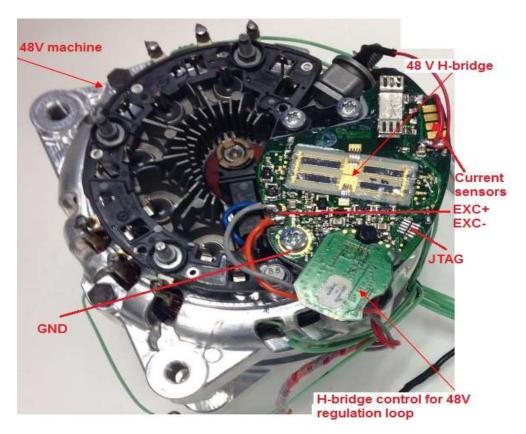
Since 2021 Formula SAE driverless (e.g. cone-recognition with Pandar 40 lidar) 6 Students from Electronic

# Attract new investments in Italy (the Pisa-Livorno Area case study)


http://www.movet.org/toscana-valley-anche-le-major-hi-tech-lapprezzano/

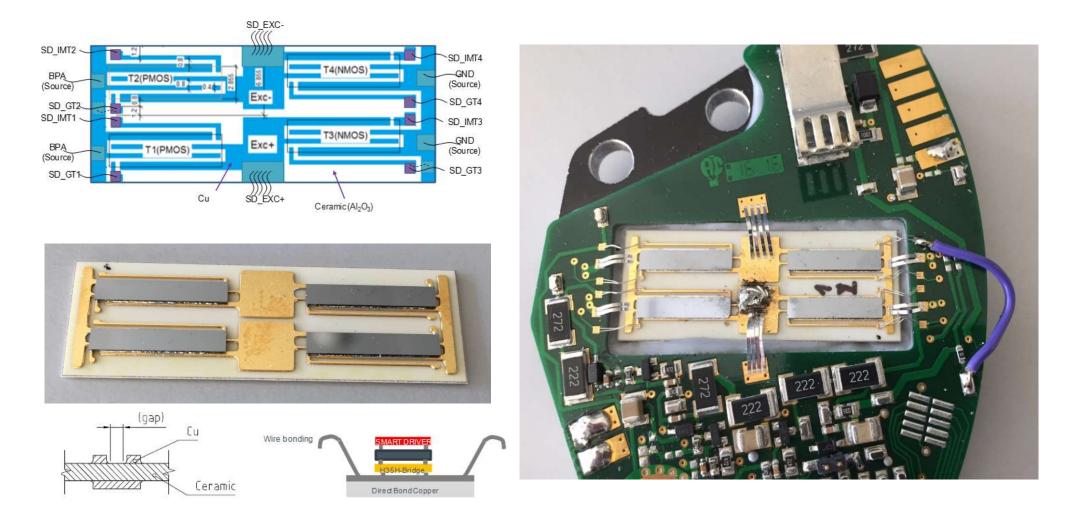



# Outline


- Trends in smart vehicles & intelligent transport systems (ITS) and impact for society/economy
- University pillars: opportunities for continuous education, R&D, and technology transfer in Electronics
- Example R&D case studies:
  - Integrated Power Converters for 48 V micro/mild-hybrid vehicles
  - ITS surveillance X-band Radar
  - Cybersecurity acceleration

# Integrated Power Converters for 48 V micro/mildhybrid vehicles




Electric Drives and Power Chargers: Recent Solutions to Improve Performance and Energy Efficiency for Hybrid and Fully Electric Vehicle, IEEE Vehicle Tech. Mag. 2020





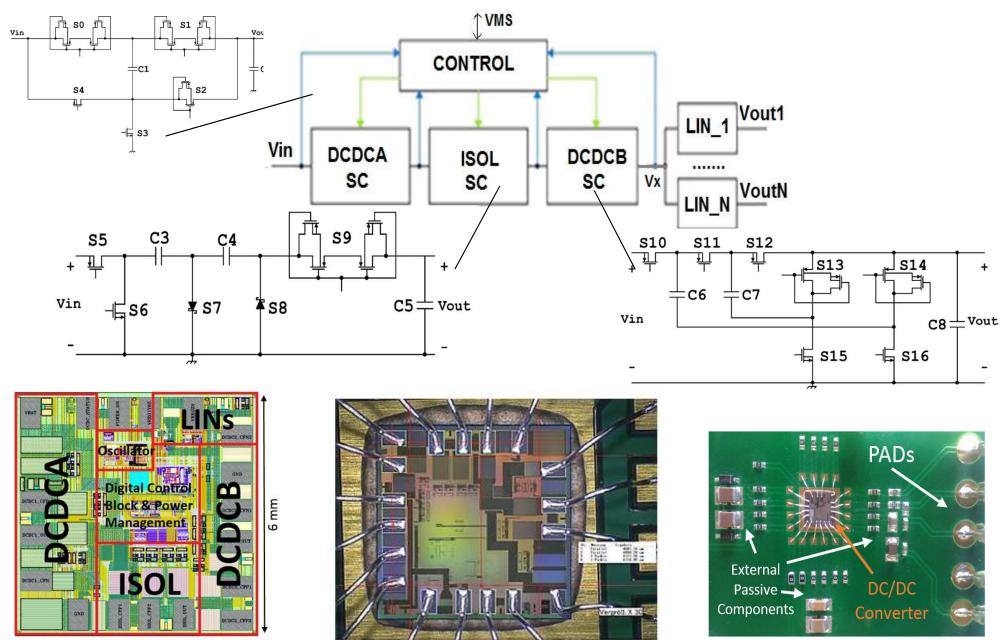
Collaboration with Valeo & AMS in FP7 Athenis3D MIT in MISTI seed fund scheme IIIII Valeo amui


# 48 V power bridge in 180 nm HVMOS



#### Direct bonded copper to reduce on-resistance

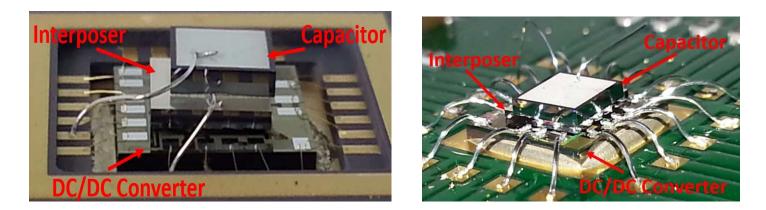
Design and Measurement of Integrated Converters for Belt-driven Starter-generator in 48 V Micro/mild Hybrid Vehicles, IEEE Trans. Ind. App. 2017


# Integrated silicon-TSV HV capacitors



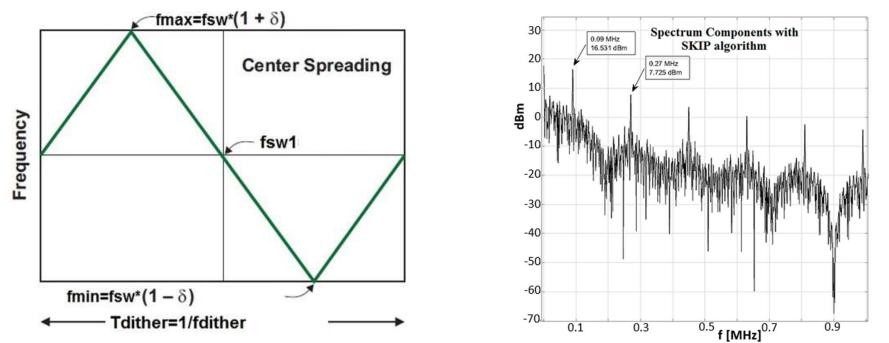
### Integrated MOS-compliant power capacitors up to 70 V

Integrated passive devices and switching circuit design for a 3D DC/Dc converter up to 60 V, Journal of Circuits, Systems and Computers, 2020


# 48 V Switched-Cap (SC) architecture

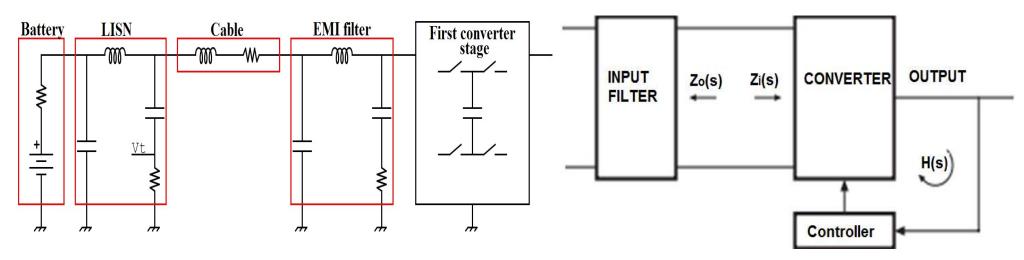


IC Design and Measurement of an Inductorless 48 V DC/DC Converter in Low-Cost CMOS Technology Facing Harsh Environments, IEEE TCAS1, 2018


6 mm

### with capacitors stacked on top




#### Similar performance of 3D vs. 2D but much lower area

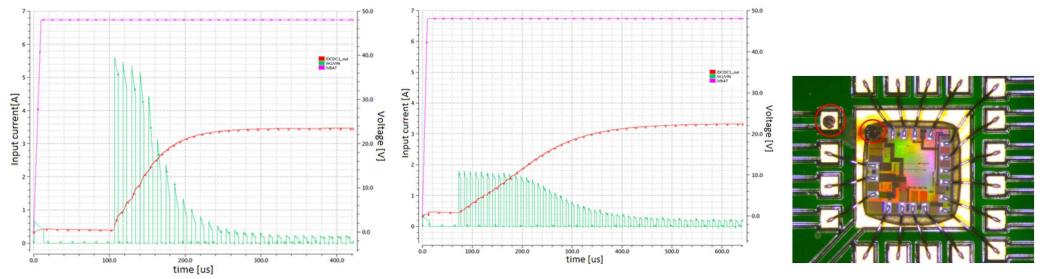
6 dB reduction of the EM Interference power emission thanks to SKIP-mode Extra spectral attenuation with fsw spreading  $(dB)=10*log[(f_{SW}*\delta)/(f_{DITHER}/n)]$ 



Design and Experimental Measurement of EMI Reduction Techniques for Integrated Switching DC/DC Converters, IEEE Can. Journal of Elec. and Com. Eng 2017

# **Anti-EMI filter**

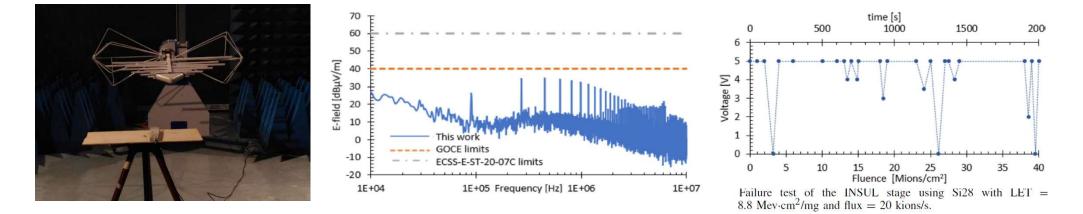


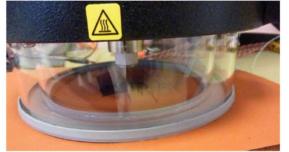

The design of anti-EMI filter aware of input converter impedance reduces x 3 the size of the filter components and avoids instability

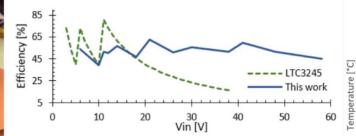
|           | Set-up                    |                                                                | EMI measurement results                                                                                                               |                                                                                                                                                                                                            |  |
|-----------|---------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           | V <sub>battery</sub> ,[V] | I <sub>load</sub> , [mA]                                       | Freq.peak., [kHz]                                                                                                                     | Amplitude, [dBV]                                                                                                                                                                                           |  |
| This work | 8                         | 0-300                                                          | 180                                                                                                                                   | -84, -74.8, -65.4                                                                                                                                                                                          |  |
|           | 12                        | 0-300                                                          | 180                                                                                                                                   | -87.2, -77.4, -69.8                                                                                                                                                                                        |  |
|           | 24                        | 0-300                                                          | 180                                                                                                                                   | -77.8, -77.2, -75.4                                                                                                                                                                                        |  |
|           | 48                        | 0-300                                                          | 160                                                                                                                                   | -74.4, -76.4, -71.4                                                                                                                                                                                        |  |
|           | 60                        | 0-300                                                          | 100                                                                                                                                   | -71.4, -63, -57.8                                                                                                                                                                                          |  |
| [ТІ]      | 30                        | 1600                                                           | 10                                                                                                                                    | -47.5                                                                                                                                                                                                      |  |
|           |                           | Vbattery, [V]        8        12        24        48        60 | Vbattery,[V]      Iload, [mA]        8      0-300        12      0-300        24      0-300        48      0-300        60      0-300 | Vbattery,[V]      Iload, [mA]      Freq.peak., [kHz]        8      0-300      180        112      0-300      180        24      0-300      180        48      0-300      180        60      0-300      100 |  |

# Soft-start

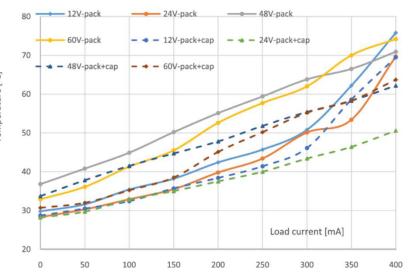
Input current without/with soft-start modality (current peaks reduced by 3 times).


HV-MOS multiple parallel devices, activated according to a proper sequence





Without soft-start chip damaged by high current peaks at device start

|                         | Conducted EMI<br>reduction | Radiated EMI reduction | Could be<br>integrated | Low<br>design<br>effort | Low<br>cost |
|-------------------------|----------------------------|------------------------|------------------------|-------------------------|-------------|
| EMI filter              | + + +                      | -                      |                        |                         |             |
| SKIP control            | ++                         | + +                    | + + +                  | +                       | ++          |
| Soft-Start<br>technique | +                          | +                      | +++                    | -                       | +           |


### EMI, temperature and rad tests



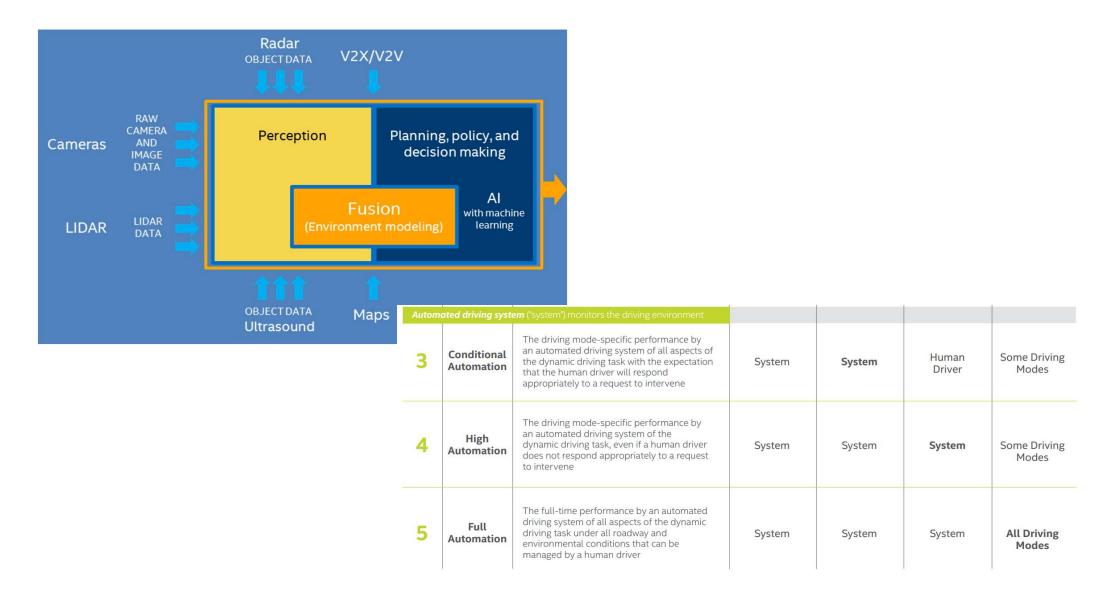




|                       | <b>This Work</b> | PT4660              | LT3245 | LM5170    |
|-----------------------|------------------|---------------------|--------|-----------|
| Туре                  | SC+linear        | Inductive           | SC     | Inductive |
| In-Out insulation     | Yes              | Yes                 | No     | No        |
| Input range [V]       | 57*              | 39                  | 35     | 79        |
| PSRR [dB]             | -60              | Off-chip LDO needed |        |           |
| Output voltage [V]    | 1.65 / 5         | 3.3 / 5             | 5      | 12 / 48   |
| Max load current [A]  | 0.4              | 30                  | 0.25   | 5         |
| Rad-hard TID          | 43 krad          | N/A                 | N/A    | N/A       |
| Stand-by current [µA] | 5                | 5000                | 4      | 10        |



Inductorless DC/DC Converter for Aerospace Applications With Insulation Features, IEEE TCAS2, 2020


Electrical, Electromagnetic, and Thermal Measurements of 2-D and 3-D Integrated DC/DC Converters", IEEE Tra. IM 2018

# Outline

- Trends in smart vehicles & intelligent transport systems (ITS) and impact for society/economy
- University pillars: opportunities for continuous education, R&D, and technology transfer in Electronics
- Example R&D case studies:
  - Integrated Power Converters for 48 V micro/mild-hybrid vehicles
  - ITS surveillance X-band Radar
  - Cybersecurity acceleration

# **Context-awareness vehicle perception**

Autonomous vehicle perception based on multi-sensor fusion (VideoCameras, Lidar, Radar, Ultrasounds) + fusion with V2X data



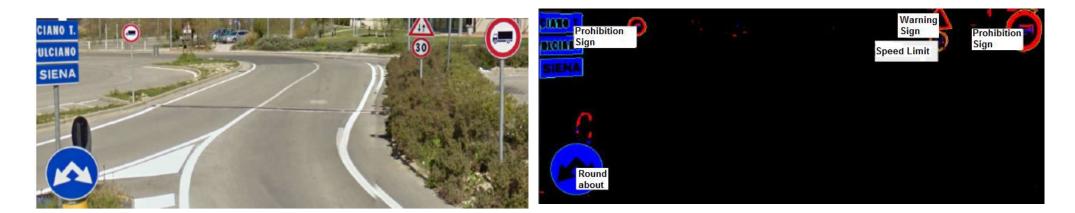
# **Context-awareness vehicle perception**



#### Radar (Master of Motion Measures)

Active EM sensor (e.g. 24&77 GHz, 10 dBm). Robust in harsh conditions. 250 m range, 0.1m limited accuracy. *Real-time DSP on FPGA for Radar imaging* Highly Integrated Low-Power Radars, Artech Book, 2014 Radar-on-Chip/in-Package in Autonomous Driving Vehicles and Intelligent Transport Systems: Opportunities and Challenges. IEEE Sign Pr. Mag 2019




### Lidar (Master of 3D mapping), use still limited by cost

Active Light sensor. Mid Range up to 100 m, good accuracy (0.02 m and 0.1<sup>0</sup> accuracy). *Micromirror scanning proposal for low-cost & wide FOV* Is Consumer Electronics Redesigning Our Cars?: Challenges of Integrated Technologies for Sensing, Computing, and Storage, IEEE Cons. Eletcr. Mag 2018



#### Camera (Master of Classification)

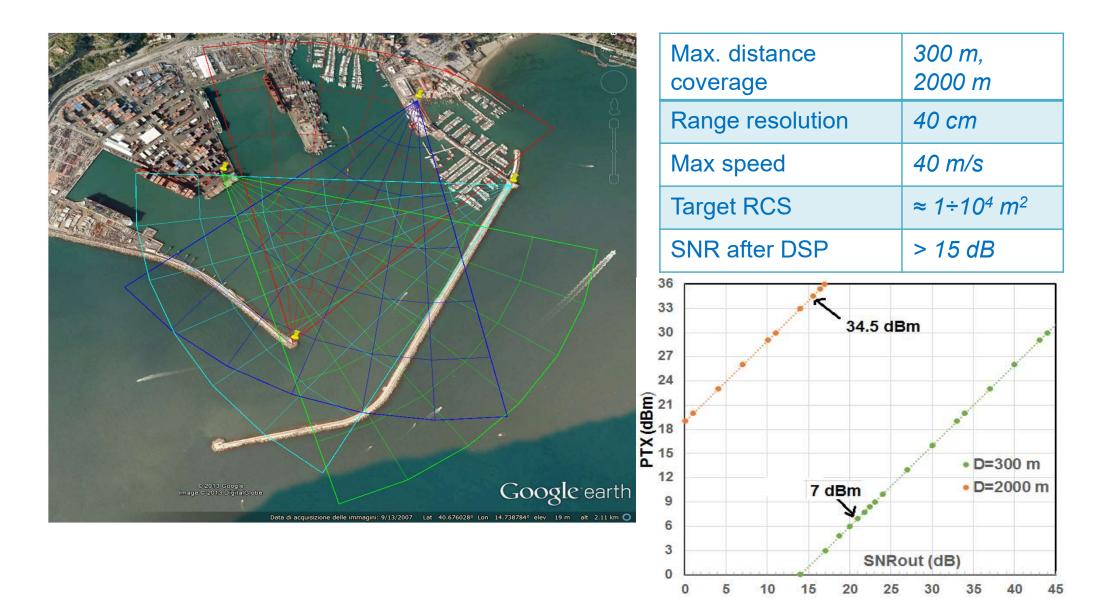
Passive. See colors & textures. Cheap. IR sensors needed for night vision JRTIP2016 640x480 automotive camera & FPGA, recognition at 15 m, <100 ms



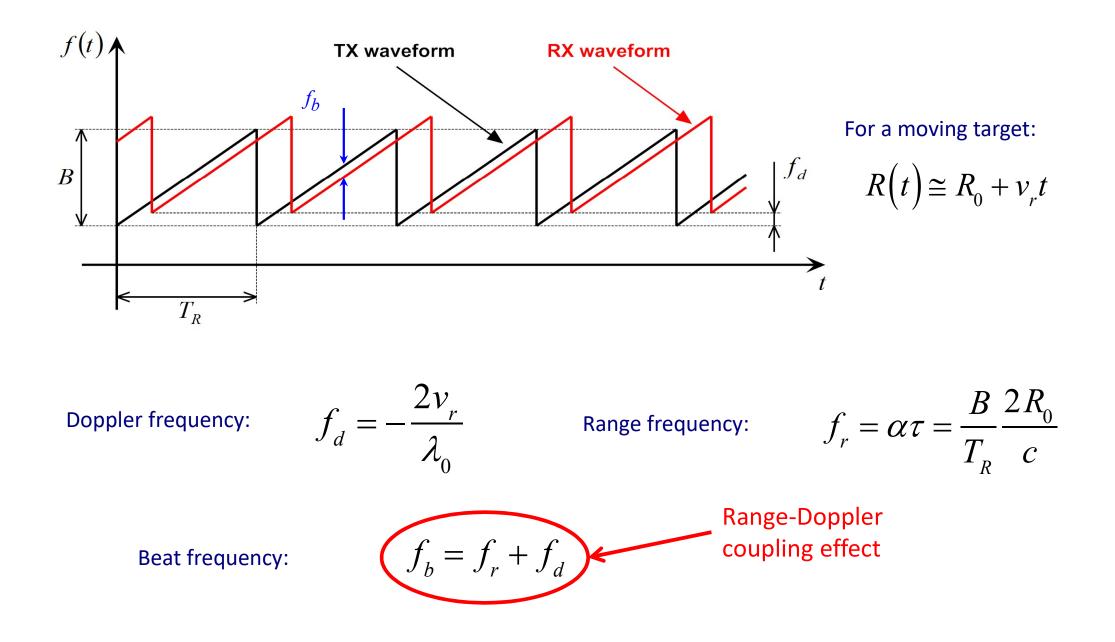
# **Real-time transport-surveillance Radar**

### X-band Radars for harbor surveillance information system & for railway-crossing and parking or road crossing safety

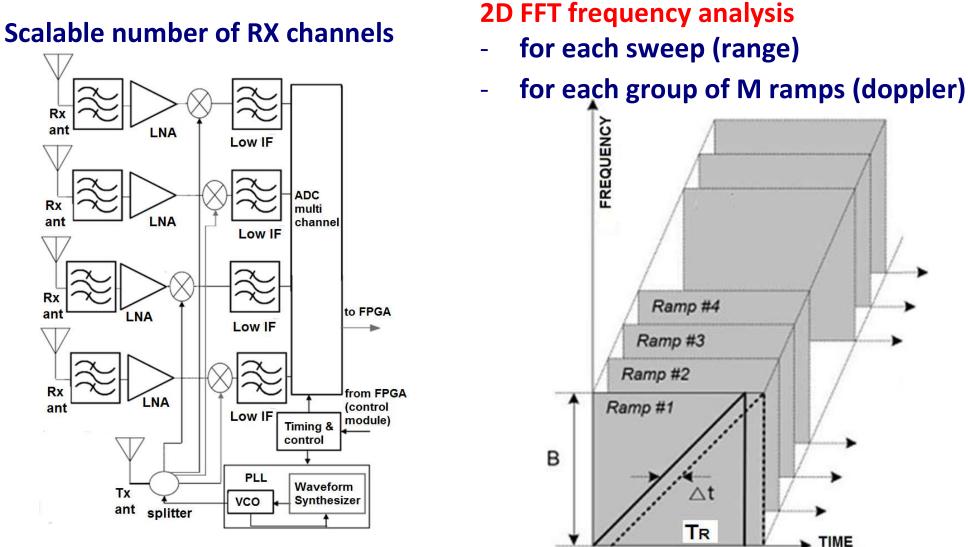
- Detection & tracking of ships/yachts ingress/egress up to 1.5 km
- Obstacle detection on a railroad or urban road crossing up to 200 m
- Network of Radars for large port areas (increase the covered area) -
- Up to 4 Radar nodes for high SIL (Safety Integrity Level) in automated railroad crossing
- 1 Tx + 3 Rx for speed, distance, angle estimation -
- Custom microwave board for imaging sensor front-end in X-band -
- Real-time DSP on FPGA for power efficiency/compact size


Collaboration with CNIT/RASS (Berizzi, Martorella, Lischi, Massini) & IDS



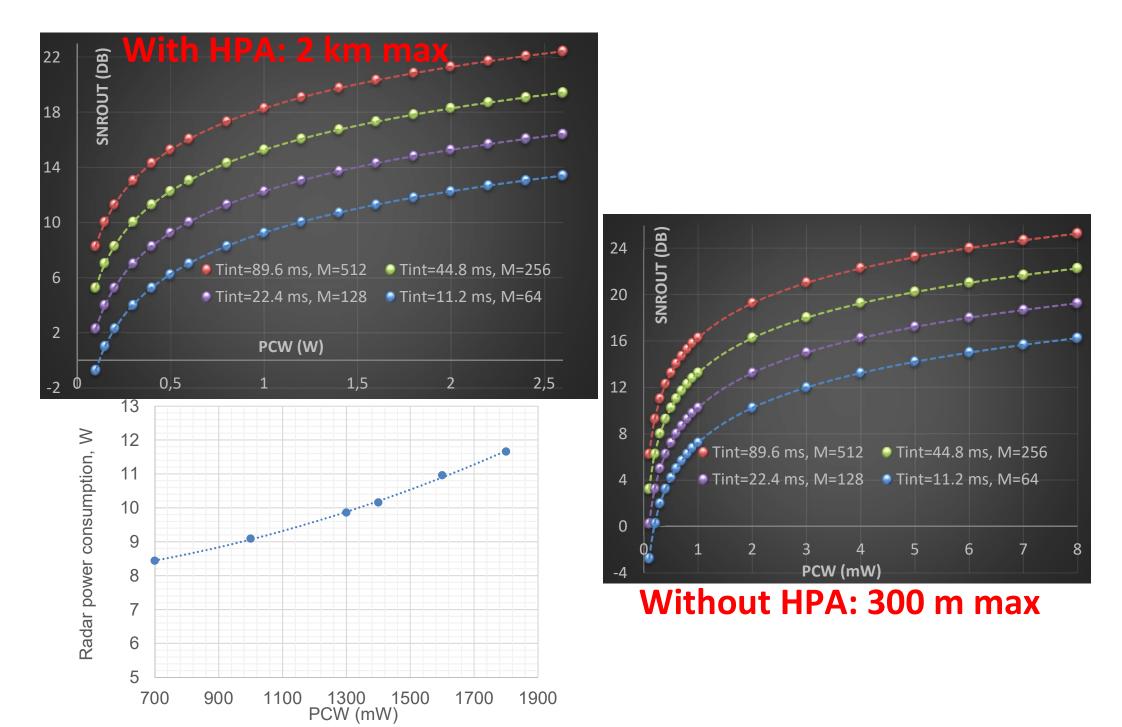




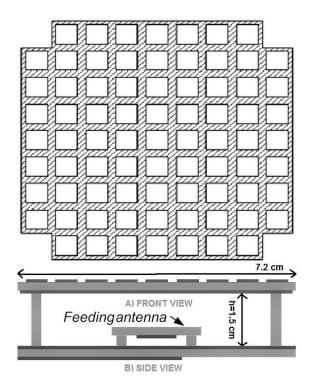


### **Specification for a transport-surveillance Radar**



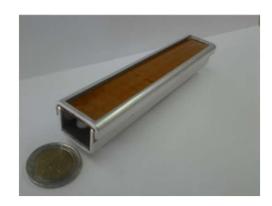
### **FMCW** waveform: moving target




### **X-band Radar transceiver architecture**

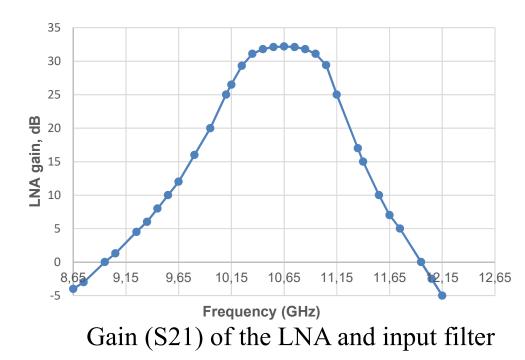


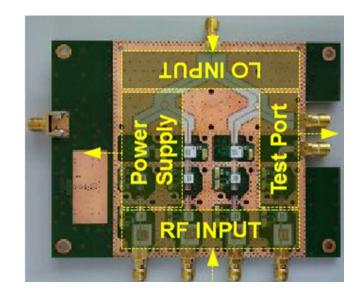

High-power stage HPA (34.5 dBm Pcw) to reach 2 Km HPA by-passed (7 dBm Pcw) for low-power applications with 300 m target


### **Received SNR vs. Pcw**



## **Fabry-Perot resonating antenna**



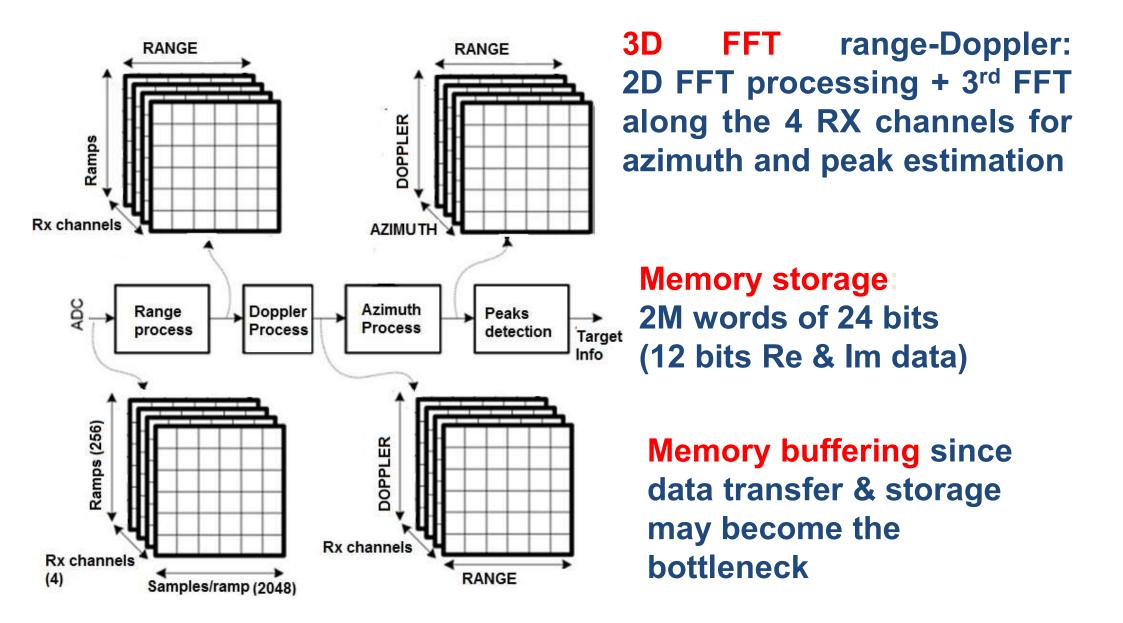


Prototype developed by the Electromagnetic fields and microwaves Lab. of the Department of Information Engineering of the University of Pisa.



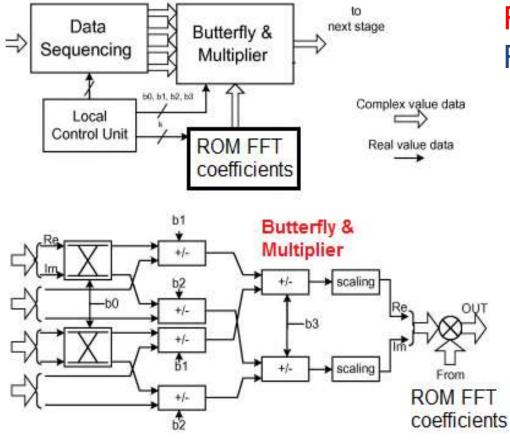
| Central frequency      | 10.65 GHz             |  |  |
|------------------------|-----------------------|--|--|
| Bandwidth              | 300 MHz-500 MHz       |  |  |
| Transmitted power      | up to 33 dBm          |  |  |
| System losses          | 8 dB                  |  |  |
| Noise figure           | 4.2 dB                |  |  |
| SFDR                   | 65 dBc                |  |  |
| Sampling frequency     | Up to 46 MS/s         |  |  |
| ADC resolution         | 12 bit/14 bit         |  |  |
| Antenna technology     | Fabry-Perot resonator |  |  |
| Antenna polarization   | H-linear              |  |  |
| Antenna azimuth HPBW   | 60°                   |  |  |
| Antenna elevation HPBW | 20°                   |  |  |
| Antenna gain           | 13 dBi                |  |  |
| Receiving channels     | 1 to 4                |  |  |

### Receiver with COTS LNA (from Hittite, now Analog Devices) & Microwave Board

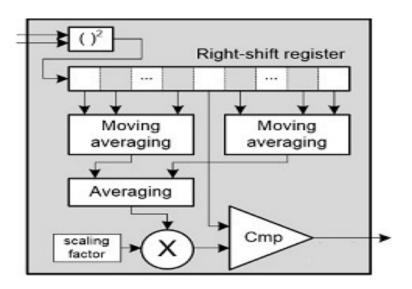





Measurement range R affected by channel impairments, HW performance, target cross-section; resolution  $d_R$  depends on sweep band B (4 cm for 77-81 GHz LRR)


$$R = \sqrt[4]{\frac{P_{CW}\lambda^2 G_{ant}^2}{(4\pi)^3} \frac{1}{L} \frac{\sigma}{SNR_{dig}} \frac{1}{k_B T N_F \Delta f}}$$

$$d_R = c/2B$$

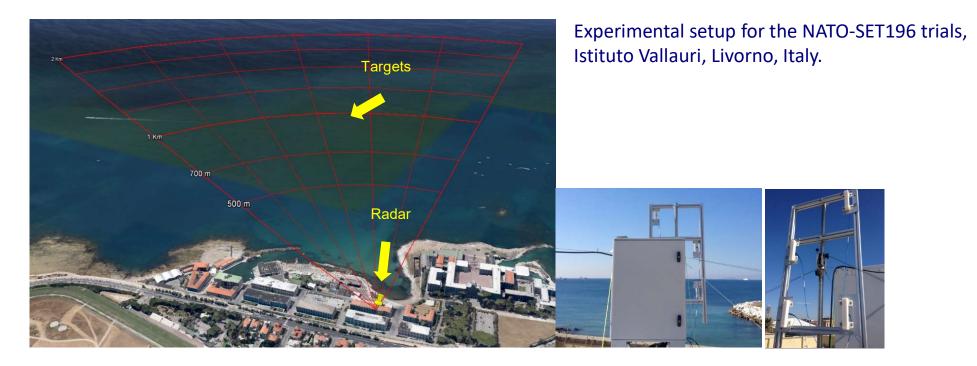

### **FPGA-based signal processing**



# HDL blocks for FPGA-based signal processing



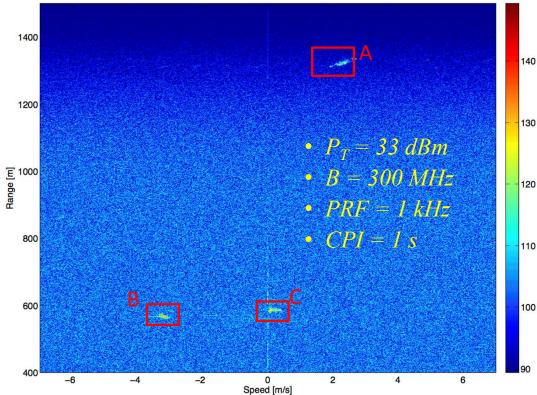
FFT core based on a multi Radix-4 stages




#### **CA-CFAR HDL circuit**

| Device       | FF    | DSPslice | LUTs  | Mem block | RX<br>Channels |
|--------------|-------|----------|-------|-----------|----------------|
| XA7A100T     | 32.4% | 88.3%    | 35.6% | 96%       | 4              |
| Zynq-XA7Z020 | 40.9% | 93.7%    | 45.7% | 93%       | 4              |

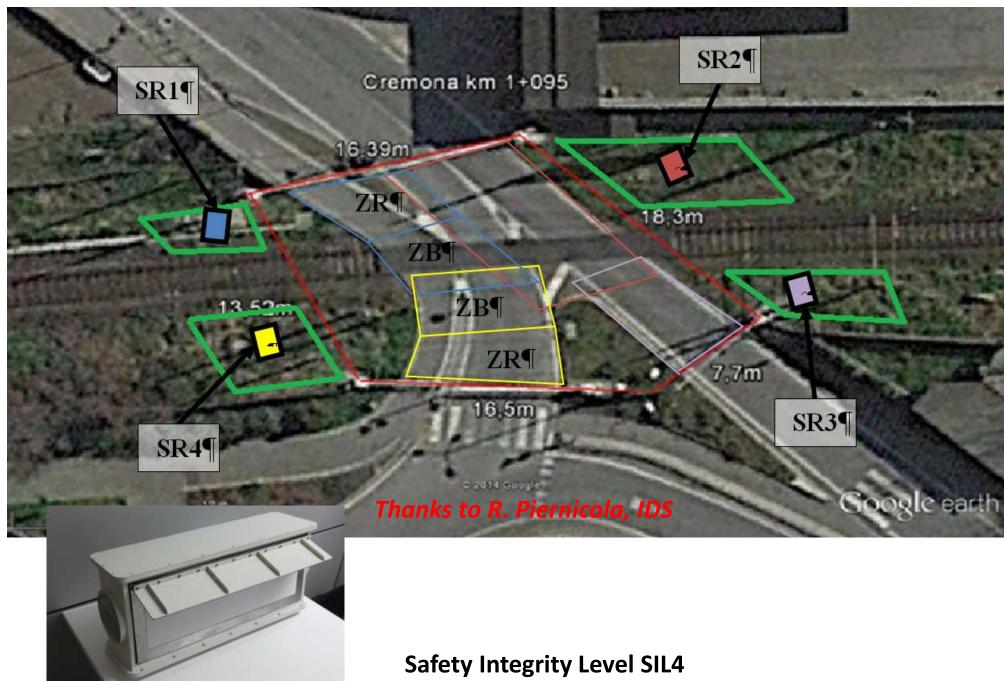
### Artix-7 FPGA and Zynq FPSoC


#### **Experimental setup and Measurements**



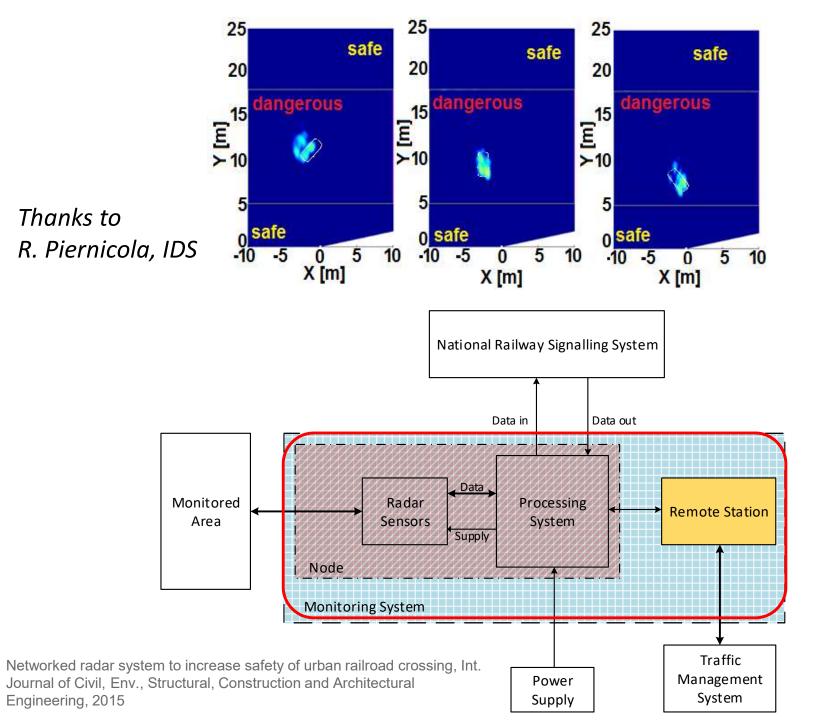
| <ul><li>A. Length: 32.5m, Width: 6.47m</li><li>Material: wood and iron</li></ul> | <ul><li>B. Length: 8.5m, Width: 2.3m</li><li>Material: fiberglass and iron</li></ul> | C. Length: 13.20m, Height: 13m<br>• Material: wood |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|

#### **Targets & Range-Doppler map**


|              | Freq, GHz   | Туре       | Power cost | Range, Output power   | Channels |
|--------------|-------------|------------|------------|-----------------------|----------|
| This work    | 10.3-10.8   | FMCW       | < 8 W      | 300 m@5 mW, 1.5 km@2W | 5        |
| IEEE TBSC    | 3.1-10.6    | Pulsed UWB | 73 mW      | <1 m, 7 pJ/pulse      | 2        |
| MOTL 2013    | 22-26       | Pulsed UWB | N/A        | N/A, 2 mW             | 2        |
| TERMA2015    | 9.375       | Pulsed     | N/A        | 45 km @ 32 kW         | N/A      |
| EURAD2014    | 10.5-10.8   | FMCW       | >100 W     | 1.2 km@2 W            | 3        |
| IEEETIM 2014 | 2.48 - 2.56 | FMCW       | N/A        | 20-100m @ 100 mW      | N/A      |
| AMS2013      | 9.4         | FMCW       | 650 W      | 50 km@100W            | 1        |



Radar sensor signal acquisition and multi-dimensional FFT processing for surveillance applications in transport systems, IEEE Trans IM 2017

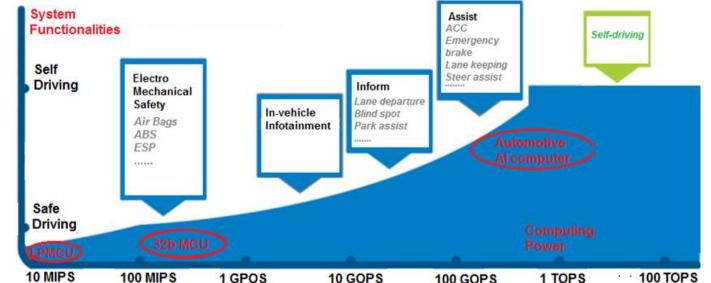

- 140 Design of compact and low-power X-band Radar for mobility surveillance applications, Computer and Electr,. Engineering, 2016
- Hardware accelerator IP cores for real-time Radar and camera-based ADAS", Journal RT Image Proc. 2020
- Detected targets appear like an oval due to the target physical size and to Radar resolution
  limits in distance and speed
- A post-processing step on the range-doppler image allows extracting size along radial axis
  and speed

#### **Example of installation on a roadcrossing**

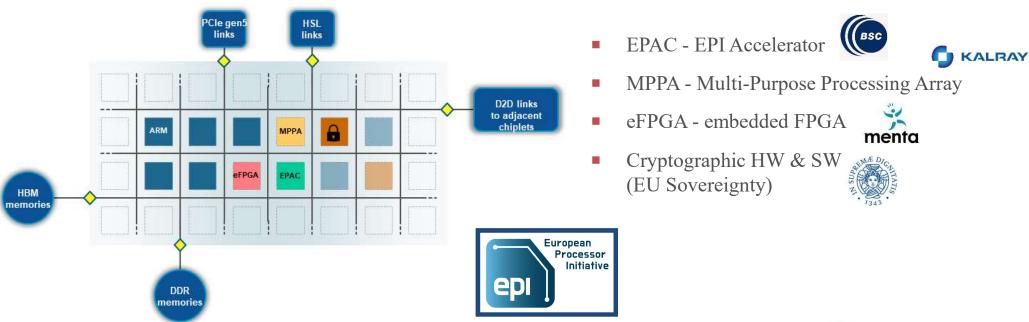


#### **Railway surveillance-radar configuration**





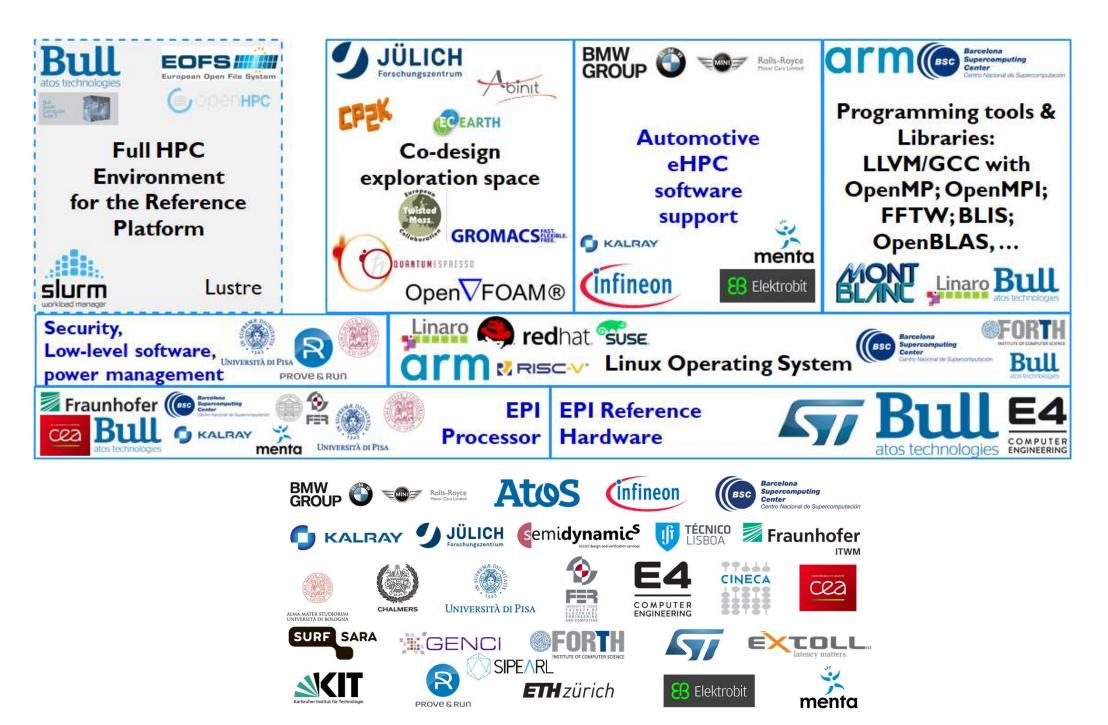

## Outline


- Trends in smart vehicles & intelligent transport systems (ITS) and impact for society/economy
- University pillars: opportunities for continuous education, R&D, and technology transfer in Electronics
- Example R&D case studies:
  - Integrated Power Converters for 48 V micro/mild-hybrid vehicles
  - ITS surveillance X-band Radar
  - Cybersecurity acceleration

## ADAS needs eHPC

Recent advances and trends in onboard embedded and networked automotive systems, IEEE Transactions Industrial Informatics, 2018




NVIDIA Xavier claims 30 TOPS, Drive AGX Pegasus 160 TOPS, Tesla FSD 144 TOPS



EPI RHEA chip (Multi-core ARM64b with SVE in 6 nm technology)

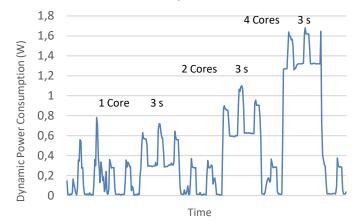


# EPI partners & HW/SW eco-system



## Automotive cybersecurity: a real challenge

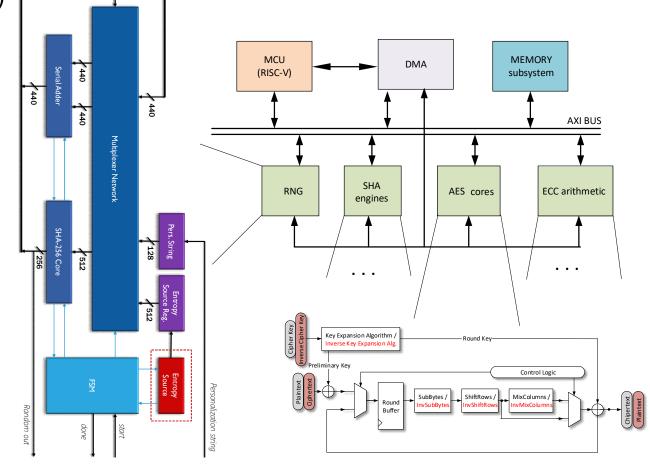





Exposure to attacks: Vehicle hack, Data tampering, Denial of Service SW computing of crypto functions slow and power demanding

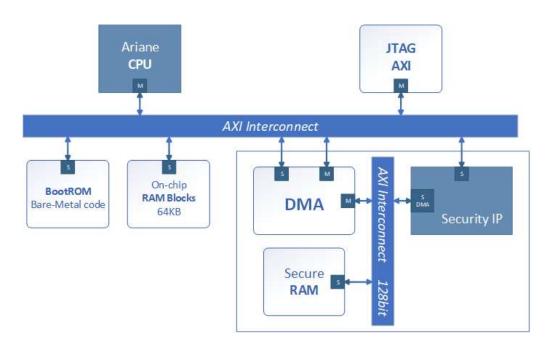
Performances data for SHA-2 256 and ECDSA SW implementation (Open SSL library on 4-core 64b Cortex-A53 Broadcom MPSoC)

| Number of<br>core | Exec. time<br>(s) | D<br>(Mb)     | TH<br>(Mbps)    | P<br>(mW)   | E<br>(mJ/Mb)     |
|-------------------|-------------------|---------------|-----------------|-------------|------------------|
| 1                 | 3                 | 917.4         | 305.80          | 300         | 0.98             |
| 2                 | 3                 | 1812.8        | 604.27          | 600         | 0.99             |
| 4                 | 3                 | 3628          | 1209.33         | 1300        | 1.07             |
|                   |                   |               |                 |             |                  |
| Number of         | Exec. time        | D             | TH              | Р           | E                |
|                   |                   |               |                 |             |                  |
| core              | (s)               | (Op)          | (Op/s)          | (mW)        | (mJ/Op)          |
| core<br>1         | (s)<br>10         | (Op)<br>282.4 | (Op/s)<br>28.24 | (mW)<br>310 | (mJ/Op)<br>10.98 |
|                   |                   |               |                 |             |                  |


Crypto accelerators for power-efficient and real-time on-chip implementation of secure algorithms", IEEE ICECS 2019



3 orders of magnitude in speed/power improvement with HW acceleration


## **HW-based Root of trust**

- Definition of the HW and SW architecture of the Secure Element (SE) that will be the root of a trusted chain to avoid that malicious SW runs on EPI multi-cores
- The multi-core on-chip system divided in secure zones (quadrants) each with a secure MCU
- Focus on a secure boot sequence and on the relation between secure elements and power manager
- SE trustiness by proper HW/SW partitioning including: OTP/e-fuse integration, RNG for seed generation, acceleration for advanced and complex crypto functions, programmability (e.g. RISC-V plus DMA capability)



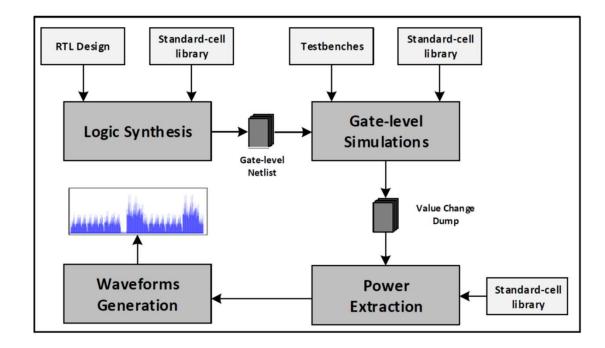
### **Configurable HW crypto IPs**

- Up to 300 Gbps AES XTS encryption/decryption in 7 nm
- Support core security functions needed for diffused security standard such as SHE, MACSec or WAVE, EVITA full compliant
- Design of accelerator IPs for embedded cybersecurity
  - AES 128/256 with configurable modes (ECB, CBC, CTR, OFB, CFB, CCM, CMAC, GCM, XTS) compliant with NIST SP800-38XX
  - SHA2 & SHA3, 256 and 512 bits compliant with FIPS-180/FIPS-202
  - Configurable ECC-based public key accelerator modes (ECDSA, ECIES, ECDH,..) and curves (NIST-P 256, 521) compliant with FIPS 186-3,...
  - TRNG & CSPRNG verified vs NIST SP800-90B, SP800-22

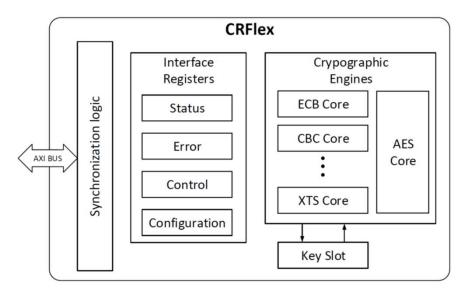


| XCZU7EV    |          |         |
|------------|----------|---------|
| (ZCU106)   | CLB LUTs | CLB Reg |
| ARIANE+AES | 75696    | 66710   |
| ECC        | 77983    | 47925   |
| SHA        | 16419    | 20071   |
| RNG        | 10689    | 7374    |
| Misc       | 6000     | 2500    |
| Tot        | 186787   | 144580  |
| Available  | 230400   | 460800  |
| Util [%]   | 81%      | 31%     |

#### More than just an HW IP core


Secure management policy of keys/certificates embedded in HW, enabling advanced SW services

- Enforce good practice in sensitive data management at HW level
- Provide mechanisms at HW level to enforce usage of cryptographic algorithm and associated keys (key management interface and internal secure storage)
- Provide necessary robustness to detect and limit impact of SW bugs and attacks by enforcing strict usage rules of the crypto processor interface
  - need to know, data separation per usage, and state machine approaches
- Help to architecture the SW for high security and safety, with the concept of SW islands: simple and restricted functionality, by isolating the different operations when manipulating sensitive data; limiting access to associated sensitive data to each part
- Ease the certification of the HW/SW by using concept of independent island when dealing with the configuration of the crypto processor (locking mechanism, CPU privilege restrictions, ...)
- Crypto-processor configuration and operation management


#### More than just an HW IP core

Design being aware of side-channel attacks:

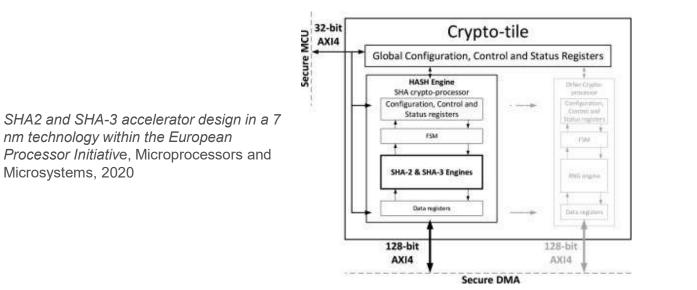
- Simulating (and measuring) power and EM information leakage
- Design-style to have flat power and EM profiles, particularly during safety critical operations



## **AES IP design & complexity results**



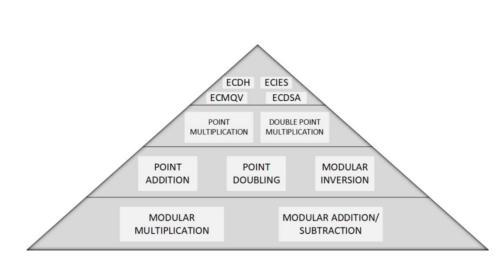
| <b>CRFlex module</b>     | Slice LUT usage | Slice Register usage |
|--------------------------|-----------------|----------------------|
| AES Core                 | 23 %            | 17 %                 |
| ECB Core                 | 0.2 %           | 0.4 %                |
| CBC Core                 | 0.3 %           | 7 %                  |
| CFB Core                 | 1 %             | 7 %                  |
| OFB Core                 | 0.3 %           | 0.6 %                |
| CTR Core                 | 0.2 %           | 4 %                  |
| CMAC Core                | 2 %             | 4 %                  |
| GCM Core                 | 43 %            | 17 %                 |
| CCM Core                 | 10 %            | 8 %                  |
| XTS Core                 | 3 %             | 2 %                  |
| Interface<br>registers   | 9 %             | 8 %                  |
| Synchronization<br>logic | 8 %             | 25 %                 |


Slice LUTs and Registers occupation for each CRFlex sub-module on Xilinx Zynq-7000.

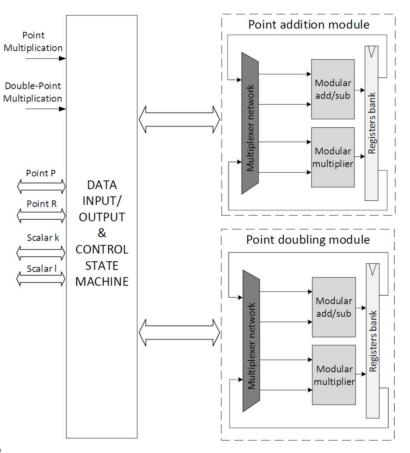
| Cipher Mode | Confidentiality | Integrity | Authenticity |
|-------------|-----------------|-----------|--------------|
| AES-ECB     | 1               | ×         | ×            |
| AES-CBC     | 1               | ×         | ×            |
| AES-OFB     | 1               | ×         | ×            |
| AES-CFB     | 1               | ×         | ×            |
| AES-CTR     | 1               | ×         | ×            |
| AES-CMAC    | ×               | 1         | ×            |
| AES-GCM     | 1               | 1         | 1            |
| AES-CCM     | 1               | 1         | 1            |
| AES-XTS     | 1               | ×         | ×            |

| 7 nm ASIC at 0 | $.75\mathrm{V}$ | 85 °C |  |
|----------------|-----------------|-------|--|
|----------------|-----------------|-------|--|

| AES-ECB-256 |             |            |  |  |  |
|-------------|-------------|------------|--|--|--|
| # Stage(s)  | Logic Usage | Throughput |  |  |  |
| <1 Stage    | 28 kGE      | 27.4 Gbps  |  |  |  |
| 2 Stages    | 55.7 kGE    | 55 Gbps    |  |  |  |
| 7 Stages    | 195 kGE     | 192 Gbps   |  |  |  |
| 14 Stages   | 370 kGE     | 384 Gbps   |  |  |  |


## SHA3/SHA-2 IP engine




SHA-3/SHA2 in 7 nm ASIC 0.75 V 85 °C (SHA-3 @ max 5GHz, SHA2 @ max 4.35 GHz)

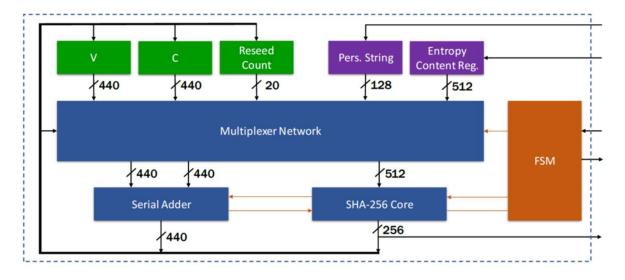
| Operation | Latency<br>[Clk cycles] | Throughput<br>[Gbps] | Operation       | Area, kGE<br>SHA-3 | Area, kGE<br>SHA2 | Power, mW<br>SHA-3 | Power, mW<br>SHA2 |
|-----------|-------------------------|----------------------|-----------------|--------------------|-------------------|--------------------|-------------------|
| SHA2 224  | 67                      | 33.24                | 224             | 31.27              | 15.43             | 24.96              | 13.43             |
| SHA2 256  | 67                      | 33.24                | 256             | 31.55              | 15.45             | 25.29              | 13.45             |
| SHA2 384  | 83                      | 53.67                | 384             | 31.36              | 28.28             | 25.07              | 22.56             |
| SHA2 512  | 83                      | 53.67                | 512             | 30.74              | 29.93             | 25.67              | 24.66             |
| SHA-3 224 | 25                      | 230.40               | 256-224         | 31.65              | 15.47             | 25.19              | 13.47             |
| SHA-3 256 | 25                      | 217.60               | 384-256         | 31.93              | 31.33             | 24.03              | 21.47             |
| SHA-3 384 | 25                      | 166.40               | 384-224         | 32.47              | 31.14             | 24.80              | 21.67             |
| SHA-3 512 | 25                      | 115.20               | 512-384         | 32.17              | 30.32             | 27.54              | 24.97             |
|           |                         |                      | 512-256         | 31.85              | 31.26             | 26.18              | 21.47             |
|           |                         |                      | 512-224         | 32.11              | 31.35             | 25.73              | 21.44             |
|           |                         |                      | 384-256-224     | 32.21              | 31.19             | 25.41              | 21.46             |
|           |                         |                      | 512-256-224     | 32.33              | 31.42             | 26.33              | 21.51             |
|           |                         |                      | 512-384-224     | 32.21              | 31.62             | 25.58              | 21.68             |
|           |                         |                      | 512-384-256     | 33.07              | 31.92             | 23.18              | 21.69             |
|           |                         |                      | 512-384-256-224 | 33.43              | 31.79             | 25.29              | 21.70             |

## **ECC IP engine**



*Fast and configurable elliptic curve crypto-processor on 7 nm technology*, Microprocessors and Microsystems, 2021




#### $_{7}\,\mathrm{nm}\,\mathrm{ASIC}$ at 0.75 V 85 °C

| Configuration | Technology | Gate counts (kGE) | Kcycles        | Freq. (MHz) | T(us)        |
|---------------|------------|-------------------|----------------|-------------|--------------|
| P-256 only    | 45 nm      | 281               | 36.390         | 400         | 90.975       |
| P-521 only    | 45 nm      | 407               | 254.456        | 375         | 686.54       |
| P-256/-521    | 45 nm      | 447               | 36.390/257.456 | 375         | 97.04/686.54 |
| P-256 only    | 7 nm       | 279               | 36.390         | 1820        | 19.99        |
| P-521 only    | 7 nm       | 405               | 257.456        | 1650        | 156.03       |
| P-256/-521    | 7 nm       | 445               | 36.39/257.456  | 1650        | 22.05/156.03 |

51

## **CSPNRG IP engine**

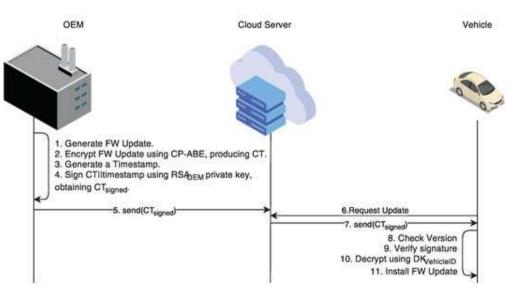
the 7 nm Artisan ASIC standard-cell reaches a throughput value of 19.67 Gbps, given a maximum clock frequency of 5.15 GHz, requiring an overall complexity of 46.56 kGE.



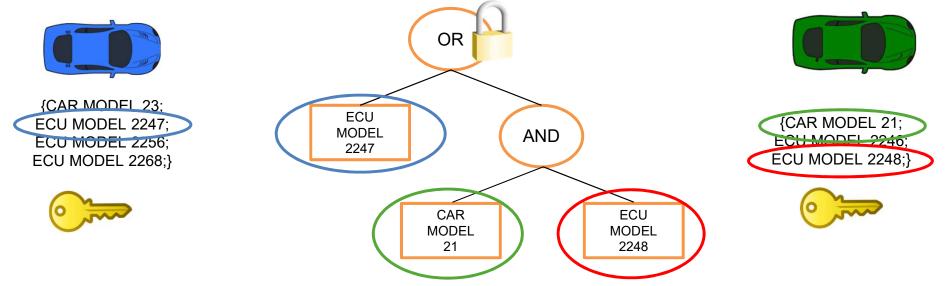
| Test                                  | <b>Block/Template Length</b> | Pass Rate       |
|---------------------------------------|------------------------------|-----------------|
| Frequency (Monobit)                   | -                            | 0.9924          |
| Frequency Within a Block              | 256                          | 0.9876          |
| Runs                                  | -                            | 0.9901          |
| Longest-Run-of-Ones in a Block        | -                            | 0.9878          |
| Binary Matrix Rank                    | -                            | 0.9901          |
| Discrete Fourier Transform (Spectral) | -                            | 0.9874          |
| Non-overlapping Template Matching     | 10                           | [0.9801-0.9974] |
| Overlapping Template Matching         | 10                           | 0.9848          |
| Maurer's Universal Statistical        | -                            | 0.9901          |
| Linear Complexity                     | 1024                         | 0.9900          |
| Serial                                | 16                           | 0.9825, 0.9876  |
| Approximate Entropy                   | 10                           | 0.9901          |
| Cumulative Sums (Cusums)              | -                            | 0.9901          |
| Random Excursions                     | -                            | [0.9826-0.9947] |
| Random Excursions Variant             | -                            | [0.9875-0.9975] |

Two Entropy seed options:

- external seed
- on-chip TRNG made of a mix of Fibonacci and Galois digital Ring-Oscillators


NIST Statistical Test Suite parameters and results

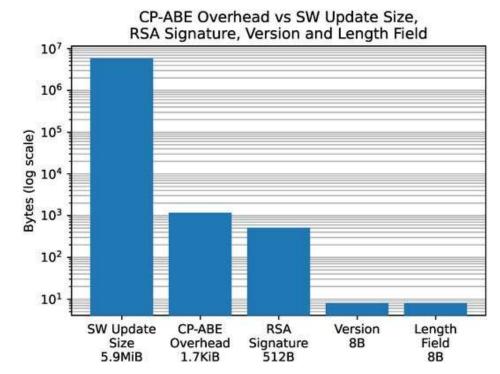
Cryptographically Secure Pseudo-Random Number Generator IP-Core Based on SHA2 Algorithm, Sensors 2020

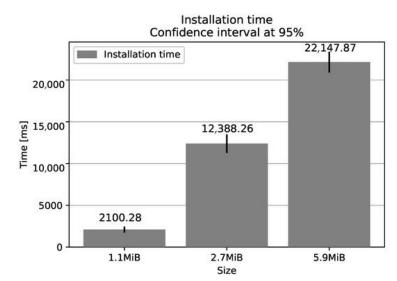

True Random Number Generator Based on Fibonacci-Galois Ring Oscillators for FPGA, Applied Sciences 2021

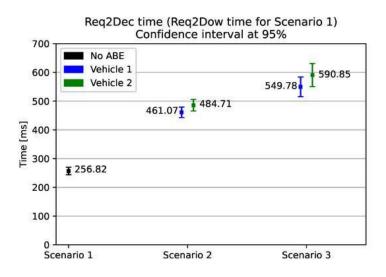
#### ABE Over The Air (OTA) SW/FW UPDATE

Attribute Based Encryption (ABE) is an asymmetric key encryption scheme that allows one to embed an Access Control Mechanism inside a ciphertext by means of a Policy, which is a Boolean expression upon some values, called attributes

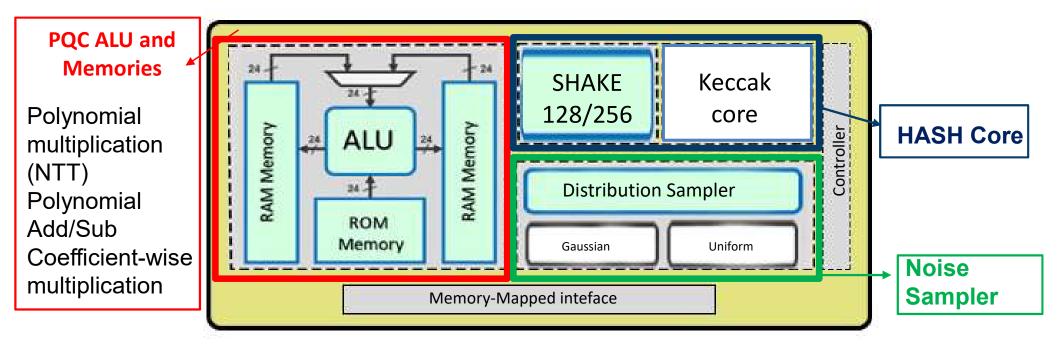



«The more attribute you need to decrypt a ciphertext, the more operations you must perform»





IDEA: FW/SW updates are encrypted in such a way only authorized ECUs can decrypt them ADVANTAGE: encrypted FW/SW updates can transit or rest on untrusted cloud servers

## **ABE OTA overhead**


Performance evaluation of attribute-based encryption in automotive embedded platform for secure software over-the-air update, Sensors 2021







#### **PQC Lattice Hardware accelerator**



HW acceleration allows x 300 gain vs SW solution Prototype and test on ZCU106 70 kGE + 1 MB and 0.6 GHz in 45nm

| Block name       | Max freq | CLB LUTs | CLB reg | BRAM | DSP |
|------------------|----------|----------|---------|------|-----|
| ALU+Memories     | 300 MHz  | 1882     | 4399    | 14,5 | 8   |
| NOISE<br>SAMPLER | 370 MHz  | 227      | 532     | 0    | 4   |
| SHAKE            | 750 MHz  | 5642     | 2969    | 0    | 0   |
| TOTAL            | 300 MHz  | 8627     | 4713    | 14,5 | 12  |

#### Conclusions



- Vehicular electronics: high impact on society and fast growing trends in digital and electrified vehicles & intelligent transport systems (ITS)
- Opportunities from reskilling needs (continuous learning), upgrade of Electronics University teaching offer
- Huge scientific R&D field (Horizon Europe, PNRR)
- Technology transfer and consulting opportunities
- Spin-off in related fields (robotics, energies, avionics, ...)
- Challenge: effort to go beyond the classic EE comfort zone



## Thanks for your attention



Prof. Ing. Sergio Saponara +39 3468790937



sergio.saponara@unipi.it, https://www.linkedin.com/in/sergio-saponara-3031431/

https://www.youtube.com/watch?v=Bg8zw1SWiJA&feature=youtu.be

Sistemi elettronici per mobilità intelligente

https://www.youtube.com/watch?v=2Y7uLbpehcQ&list=PL13CyHsHfOt1GC19RsPv-FvITnbbnd2e0&index=7

Integrated Serializer and High-speed driver for mulTi-gbps And Rad-Hard links

